离心机冷冻油沉淀后怎么办 北利离心机报EH故障如何处理?

[更新]
·
·
分类:贸易
4713 阅读

离心机冷冻油沉淀后怎么办

北利离心机报EH故障如何处理?

北利离心机报EH故障如何处理?

1、EH油压波动
EH油压波动是指在机组正常工作的情况下(非阀门大幅度调整),EH油压上下波动范围大于1.0MPa。
EH系统中配置的二台主油泵是恒压变量泵。恒压变量泵是通过泵出口压力的变化自动调整泵的输出流量来达到压力恒定的目的,所以,从理论上讲恒压泵是有一定的压力波动。但如果压力波动范围超过1.0MPa,我们则认为该泵出现调节故障。当然,如果此时泵的最低输出压力大于11.2MPa,并不影响机组运行。
出现EH油压波动现象,主要是由于泵的调节装置动作不灵活造成的。调节装置分为二部分:调节阀和推动机构。调节阀装在泵的上部,感受泵出口压力变化并转化成推动机构的推力,其上的调整螺钉用于设定系统压力。当调节阀阀芯出现卡涩或摩擦阻力增大时,不能及时将泵出口压力信号转换成推动机构的推力,造成泵流量调整滞后于压力变化,使泵输出压力波动。出现这种情况,可以拆下调节阀并解体,清洗相关零件,检查阀芯磨损情况,复装后基本可以消除该阀故障。
推动机构在泵体内部,活塞产生的推动力克服弹簧力来决定泵斜盘倾角。当推动活塞发生卡涩或摩擦力增大时,调节阀输出的压力信号变化不能及时转化成斜盘倾角(即泵输出流量)变化,使泵的输出压力发生波动。出现这种情况,需清洗推动机构的相关零件,并检查推动活塞的表面质量。因该部分机构装在泵体内,最好由专业技术人员来完成。
2、抗燃油酸值升高
抗燃油新油酸度指标为0.03(mgKOH/g),国家标准规定的运行中指标为0.15,当酸度指标超标时,我们认为抗燃油酸度过高,高酸度会导致抗燃油产生沉淀、起泡和空气间隔等问题。
影响抗燃油酸度的因素很多,对于我们使用的EH系统来讲,影响抗燃油酸度的主要因素为局部过热和含水量过高,其中以局部过热最为普遍。因为EH系统工作在汽轮机上,伴随着高温、高压蒸汽,难免有部分元件或管道处于高温环境中,温度增加使抗燃油氧化加快,氧化会使抗燃油酸度增加,颜色变深。所以,我们在设计和安装EH系统时应注意:1)EH系统元件特别是管道应远离高温区域;2)增加通风,降低环境温度。3)增加抗燃油的流动,尽量避免死油腔。
由于冷油器的可靠性设计,由冷油器中漏水进抗燃油的例子鲜有发生,抗燃油中的水分多数是由于油箱结露产生的。水在抗燃油中会发生水解,水解会产生磷酸,磷酸又是水解的催化剂。所以,大量的水分会使抗燃油酸值升高。
抗燃油的酸值升高后,必须连续投入再生装置。再生装置中的硅藻土滤芯能有效地降低抗燃油的酸度。当抗燃油的酸度接近0.15时,就应投入再生装置,这时酸度会很快下降。当抗燃油酸度超过0.3时,使用硅藻土很难使酸度降下来。当抗燃油酸度超过0.5时,已不能运行,可能需要换油。
3、 EH油温升高
EH系统的正常工作油温为20℃~60℃,当油温高于57℃时,自动投入冷却系统。如果在冷却系统已经投入并正常工作的情况下,油温持续在50℃以上,则我们认为系统发热量过大,油温过高。
油温过高排除环境因素之外,主要是由于系统内泄造成的。此时,油泵的电流会增大。造成系统内泄过大的原因主要有一下几种:1)安全阀泄漏。安全阀的溢流压力应高于泵出口压力2.5~3.0MPa,如果二者的差值过小,会造成安全阀溢流。此时安全阀的回油管会发热。2)蓄能器短路。正常工作时蓄能器进油阀打开,回油阀关闭。当回油阀未关紧或阀门不严时,高压油直接泄漏到回油管,造成内泄。此时,阀门不严的蓄能器的回油管会发热。3)伺服阀泄漏。当伺服阀的阀口磨损或被腐蚀时,伺服阀内泄增大。此时,该油动机的回油管温度会升高。4)卸荷阀卡涩或安全油压过低。当油动机上卸荷阀动作后发生卡涩会造成泄漏,当泄漏大时油动机无法开启,当泄漏小时造成内泄。此时,该油动机的回油管温度会升高。当安全系统发生故障出现泄漏时,安全油压降低,会使一个或数个卸荷阀关不严造成油动机内泄。
4、油动机摆动
在输入指令不变的情况下,油动机反馈信号发生周期性的连续变化,我们称之为油动机摆动。油动机摆动的幅值有大有小,频率有快有慢。
产生油动机摆动的原因主要有以下几个方面:1)热工信号问题。当位移传感器发生扰动时、当伺服卡输出信号含有交流分量时、当伺服阀信号电缆有某点接地时均会发生油动机摆动现象。2)伺服阀故障。当伺服阀接收到指令信号后,因其内部故障产生振荡,使输出流量发生变化,造成油动机摆动。3)油动机与阀门构成的执行机构,存在卡涩现象。4)阀门流量特性存在非线性,需要改变机组运行工作点,确保调阀良好的调节能力,或者修改阀门特性曲线使常用工作点远离该位置。
5、油管振动
EH油管路特别是靠近油动机部分发生高频振荡,振幅达0.5mm以上,我们称之为EH油管振动,其中以HP管为最多。油管振动会引起接头或管夹松动,造成泄漏,严重时会发生管路断裂。
引起油管振动的原因主要有以下几个方面:第一、机组振动。第二、管夹固定不好。管夹必须可靠固定,如果管夹固定不好,会使油管发生振动。第三、伺服阀故障,产生振荡信号,引起油管振动。第四、控制信号夹带交流分量,使HP油管内的压力交变产生油管振动。
可以通过试验来判断是哪一种原因引起的振动。
6、ASP油压报警
ASP油压用于在线试验AST电磁阀。ASP油压由AST油压通过节流孔产生,再通过节流孔到回油。ASP油压通常在7.0MPa左右。当AST电磁阀1或3动作时,ASP压力升高,ASP1压力开关动作;当AST电磁阀2或4动作时,ASP压力降低,ASP2压力开关动作。如果AST电磁阀没有动作时,ASP1或2压力开关动作,或AST电磁阀复位后压力开关不复位,就存在ASP油压报警。
ASP油压报警多数是由于节流孔堵塞造成的。当前置节流孔(AST到ASP的节流孔)堵塞时,ASP油压降低,ASP2压力开关动作,发出ASP油压报警;当后置节流孔(ASP到回油的节流孔)堵塞时,ASP油压升高,ASP1压力开关动作,发出ASP油压报警。可以通过检查清洗节流孔来清除故障。
当然AST电磁阀故障也会发出ASP油压报警。报警后首先要确定是哪一只电磁阀故障,可以通过更换电磁阀的位置来判定。

硫酸铵沉淀法的原理及步骤?

抗体的纯化 ( 硫酸铵沉淀法)
一, 基本原理
硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。用此方法可以将主要的免疫球从样品中分离,是免疫球蛋白分离的常用方法。高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。这种方法称之为盐析。盐浓度通常用饱和度来表示。硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。
二, 试剂及仪器
1 . 组织培养上清液、血清样品或腹水等
2. 硫酸铵( NH 4 ) SO 4
3. 饱和硫酸铵溶液( SAS )
4. 蒸馏水
5. PBS( 含 0.2g /L 叠氮钠 )
6. 透析袋
7. 超速离心机
8. pH 计
9. 磁力搅拌器
三, 操作步骤
以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。各种不同的免疫球蛋白盐析所需硫酸 铵的饱和度也不完全相同。通常用来分离抗体的硫酸铵饱和度为 33% — 50% 。
(一)配制饱和硫酸铵溶液( SAS )
1.将 767g ( NH 4 ) 2 SO 4 边搅拌边慢慢加到 1 升 蒸馏水中。用氨水或硫酸调到硫酸pH7.0 。此即饱和度为 100% 的硫酸铵溶液( 4.1 mol/L, 25 ° C ).
2.其它不同饱和度铵溶液的配制
(二)沉淀
1.样品(如腹水) 20 000 ′ g 离心 30 min ,除去细胞碎片;
2.保留上清液并测量体积;
3.边搅拌边慢慢加入等体积的 SAS 到上清液中,终浓度为 1 : 1 (
4.将溶液放在磁力搅拌器上搅拌 6 小时或搅拌过夜( 4 ° C ),使蛋白质充分沉淀。
(三)透析
1.蛋白质溶液 10 000 ′ g 离心 30 min ( 4 ° C )。弃上清保留沉淀;
2.将沉淀溶于少量( 10-20ml ) PBS -0.2g /L 叠氮钠中。沉淀溶解后放入透析袋对
PBS -0.2g /L 叠氮钠透析 24-48 小时( 4 ° C ),每隔 3-6 小时换透析缓冲液一次,以彻底除去硫酸氨;
3.透析液离心,测定上清液中蛋白质含量。
四,应用提示
(一) 先用较低浓度的硫酸氨预沉淀,除去样品中的杂蛋白。
1.边搅拌边慢慢加 SAS 到样品溶液中,使浓度为 0.5:1 (v/v) ;
2.将溶液放在磁力搅拌器上搅拌 6 小时 或过夜( 4 ° C );3.3000 ′ g 离心 30 min ( 4 ° C ),保留上清液;上清液再加 SAS 到 0.5:1(v/v) ,再次离心得到沉淀。将沉淀溶于 PBS ,同前透析,除去硫酸氨;
4.上清液再加 SAS 到 0.5:1 (v/v) ,再次离心得到沉淀。将沉淀溶于 PBS ,同前透析,除去硫酸氨;
5.杂蛋白与欲纯化蛋白在硫酸氨溶液中溶解度差别很大时,用预沉淀除杂蛋白是非常有效
(二)为避免体积过大,可用固体硫酸氨进行盐析(硫酸氨用量参考表 1 );硫酸氨沉淀法与层析 技术结合使用,可得到更进一步纯化的抗体。